针对重型运载火箭超大尺寸舱段铆接装配过程中潜在的装配流程不合理、装配偏差、装配变形等问题,开展仿真分析技术在舱段装配过程中应用方法的研究。运用DELMIA软件进行装配过程仿真,优化装配流程,检验产品及工装设计的合理性;运用CATIA 3DCS软件进行装配偏差仿真,预测关键测点装配偏差,优化装配流程及零部件容差分配;运用Ls-DYNA软件进行装配变形仿真,优化装配夹具设计、铆接及装配路径,排除协调及对接风险。
重型运载火箭是我国建设航天强国的重要标志,也是维护我国太空安全、推动我国太空探索向更加遥远深空拓展的战略工具[1]。重型运载火箭的研制涉及箭体结构系统、动力系统、控制系统、地面发射系统等关键组成,是复杂的系统工程。在箭体结构研制方面,重型运载火箭芯级直径为Φ9500 mm [2], 远超CZ-3A 系列火箭Φ3350 mm 及CZ-5 火箭Φ5000 mm 的规模。在整个箭体结构中,铆接舱段起到贮箱间连接及仪器设备安装载体的作用,是重要的承力部段,其尺寸巨大、结构复杂,是箭体结构研制的一个难点。
长期以来,我国运载火箭箭体结构的研制一直采用串行模式:设计部门完成产品设计并下发二维图纸,生产部门依据产品图纸完成工装设计制造并开展产品试制。串行制造模式,产品设计问题、工装问题、工艺问题在产品制造阶段集中爆发,返工成本高昂且耽误宝贵的研制周期。近年,随着三维数字化设计技术的推行, 产品设计逐步由二维向三维转变, 并最终在新一代运载火箭CZ-7 上实现了无纸化设计。
相对于设计手段数字化技术的进步,在制造阶段工艺方法及流程的设计仍然依赖工艺人员的经验,制造工艺及流程合理性的验证也只能在实物制造阶段进行,不能适应型号研制的需求。
如今,装配仿真技术在航空、航天等复杂产品制造中扮演的角色越来越重要,成功的仿真能够为产品的制造过程提供全方位的指导[3]。本文以重型运载火箭超大直径铆接舱段试验件为例,开展仿真分析技术在舱段装配过程中应用方法的研究,探索数字化仿真的手段解决装配过程中流程优化、装配变形、装配偏差等问题的方法,为重型运载火箭箭体结构的研制奠定技术基础。
2. 需求分析 2.1. 产品特点 运载火箭箭体结构铆接舱段主要包括以下几种结构形式:金属(复合材料)蒙皮、框、桁铆接结构,金属蒙皮、框、桁焊接结构,整体网格加筋壁板焊接或铆接结构,复合材料整体成型结构。其中,蒙皮、框、桁铆接结构技术成熟、应用广泛,且零部件的加工难度相对较低,铆接装配的难度相对较大。