本课题研究基于文本信息分析人物性格,聚焦于静态文本来获取小说、剧本等文学作品中的人物性格,使用《平凡的世界》这一小说著作作为样本分析训练模型,结合心理学中的大五人格算法,主要采用神经网络与传统机器学习相结合的方式,通过对比doc2Vec和word2Vec + CNN两个模型的模型效果发现在预测未知人物性格时前者有着更好的表现,因此,该模型将智能分析文本这一想法变为可能,并且可通过大五人格量表将预测得分映射出人物的性格词汇,使得未来机器能够“读懂”语义,对用户画像、智能机器以及心理学的发展具有重要意义。