以量子粒子群算法优化支持向量机中的关键参数(核函数参数σ、不敏感损失系数ε、惩罚系数C),建立最佳的航空发动机性能监控模型。推力和尾喷口排气温度作为发动机重点监控参数,以两者为基础利用主成分分析的方法建立发动机监控性能综合指标。基于发动机性能模型参数敏感性分析,得到与发动机性能最为密切的参数,作为监控模型输入。通过实例验证,本文建立模型能够很好的监控发动机性能变化,为发动机维修提供参考。
航空发动机性能监控是一直是业界研究的重点。由于以前设计的发动机,监控参数数量有限,能够提供发动机使用性能的信息不多。随着现代航空发动机上安装的传感器数量及种类的增多,获取到的参数及有用信息增多。过去以各个参数基准阀值的监控方法比较简单,没有揭示变量的深层次信息,并且多参数监控,容易造成显示不直观,多参数监控容易造成意义相悖的情形。文献[1]利用卡尔曼滤波和主元分析相结合的方法监控发动机的性能变化,准确得出发动机性能在某一时间段超出阀值,为及时采取维护措施提供参考。文献[2]针对测量参数存在的非线性、参数间的耦合及噪声干扰,将量子粒子群算法引入到流形学习的参数选择中,结合径向基神经网络,提出了一种故障诊断方法。将所用方法应用于航空发动机的故障诊断中,结果表明:本文方法能够有效的对发动机各种复合故障进行分类,精度达到97.33%。常用的监控模型建立方法有人工神经网络、支持向量机、模糊数学和自适应模拟等[3]。
本文在此基础上设计一种监控模型[4] [5], 利用获取的传感器参数为基础, 以推力和排气温度直观量为期望输出,便于监控发动机的性能状态。以支持向量机为发动机监控模型,利用量子粒子群算法优化模型中的相关参数,以期建立最佳的监控模型。由于传感器得到的测量参数相对较多,利用发动机模型参数敏感性分析,确定最佳的监控模型输入,选取推力和尾喷口排气温度作为模型输出,简化模型计算量。最后利用主成分分析的方法,将推力和尾喷口排气温度转化成更为直观的观测量,便于监控发动机的性能状态,为发动机维护提供参考依据。
2. 支持向量机基础理论 根据统计学习理论,利用支持向量机实现回归的基本思想是通过一个非线性映射ϕ 将样本数据集(), iix y (1,2, , in=)映射到高维特征空间,并在此空间构造线性回归函数: ( )ywxbϕ=⋅+ (1) 而w 和b 的求解可归结为下列凸二次规划(QP)问题: